Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 659: 849-858, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38218088

ABSTRACT

HYPOTHESIS: The mucoadhesive characteristics of amphoteric polymers (also known as polyampholytes) can vary and are influenced by factors such as the solution's pH and its relative position against their isoelectric point (pHIEP). Whilst the literature contains numerous reports on mucoadhesive properties of either cationic or anionic polymers, very little is known about these characteristics for polyampholytes EXPERIMENTS: Here, two amphoteric polymers were synthesized by reaction of linear polyethylene imine (l-PEI) with succinic or phthalic anhydride and their mucoadhesive properties were compared to bovine serum albumin (BSA), selected as a natural polyampholyte. Interactions between these polymers and porcine gastric mucin were studied using turbidimetric titration and isothermal titration calorimetry across a wide range of pHs. Model tablets were designed, coated with these polymers and tested to evaluate their adhesion to porcine gastric mucosa at different pHs. Moreover, a retention study using fluorescein isothiocyanate (FITC)-labelled polyampholytes deposited onto mucosal surfaces was also conducted FINDINGS: All these studies indicated the importance of solution pH and its relative position against pHIEP in the mucoadhesive properties of polyampholytes. Both synthetic and natural polyampholytes exhibited strong interactions with mucin and good mucoadhesive properties at pH < pHIEP.


Subject(s)
Mucins , Polymers , Swine , Animals , Polymers/chemistry , Mucins/chemistry , Gastric Mucins
2.
Mater Horiz ; 10(12): 5354-5370, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37814922

ABSTRACT

In this focus article, we provide a scrutinizing analysis of transmission electron microscopy (TEM) and dynamic light scattering (DLS) as the two common methods to study the sizes of nanoparticles with focus on the application in pharmaceutics and drug delivery. Control over the size and shape of nanoparticles is one of the key factors for many biomedical systems. Particle size will substantially affect their permeation through biological membranes. For example, an enhanced permeation and retention effect requires a very narrow range of sizes of nanoparticles (50-200 nm) and even a minor deviation from these values will substantially affect the delivery of drug nanocarriers to the tumour. However, amazingly a great number of research papers in pharmaceutics and drug delivery report a striking difference in nanoparticle size measured by the two most popular experimental techniques (TEM and DLS). In some cases, this difference was reported to be 200-300%, raising the question of which size measurement result is more trustworthy. In this focus article, we primarily focus on the physical aspects that are responsible for the routinely observed mismatch between TEM and DLS results. Some of these factors such as concentration and angle dependencies are commonly underestimated and misinterpreted. We convincingly show that correctly used experimental procedures and a thorough analysis of results generated using both methods can eliminate the DLS and TEM data mismatch completely or will make the results much closer to each other. Also, we provide a clear roadmap for drug delivery and pharmaceutical researchers to conduct reliable DLS measurements.


Subject(s)
Drug Delivery Systems , Nanoparticles , Dynamic Light Scattering , Microscopy, Electron, Transmission
3.
J Colloid Interface Sci ; 640: 558-567, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36878073

ABSTRACT

The mixing of conventional and pH-sensitive lipids was exploited to design novel stimuli-responsive liposomes (fliposomes) that could be used for smart drug delivery. We deeply investigated the structural properties of the fliposomes and revealed the mechanisms that are involved in a membrane transformation during a pH change. From ITC experiments we observed the existence of a slow process that was attributed to lipid layers arrangement with changing pH. Moreover, we determined for the first time the pKa value of the trigger-lipid in an aqueous milieu that is drastically different from the methanol-based values reported previously in the literature. Furthermore, we studied the release kinetics of encapsulated NaCl and proposed a novel model of release that involves the physical fitting parameters that could be extracted from the release curves fitting. We have obtained for the first time, the values of pores self-healing times and were able to trace their evolution with changing pH, temperature, the amount of lipid-trigger.


Subject(s)
Drug Delivery Systems , Liposomes , Liposomes/chemistry , Lipids , Hydrogen-Ion Concentration
4.
Bioeng Transl Med ; 8(2): e10408, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36925708

ABSTRACT

Effective chemotherapy delivery for glioblastoma multiforme (GBM) is limited by drug transport across the blood-brain barrier and poor efficacy of single agents. Polymer-drug conjugates can be used to deliver drug combinations with a ratiometric dosing. However, the behaviors and effectiveness of this system have never been well investigated in GBM models. Here, we report flexible conjugates of hyaluronic acid (HA) with camptothecin (CPT) and doxorubicin (DOX) delivered into the brain using focused ultrasound (FUS). In vitro toxicity assays reveal that DOX-CPT exhibited synergistic action against GBM in a ratio-dependent manner when delivered as HA conjugates. FUS is employed to improve penetration of DOX-HA-CPT conjugates into the brain in vivo in a murine GBM model. Small-angle x-ray scattering characterizations of the conjugates show that the DOX:CPT ratio affects the polymer chain flexibility. Conjugates with the highest flexibility yield the highest efficacy in treating mouse GBM in vivo. Our results demonstrate the association of FUS-enhanced delivery of combination chemotherapy and the drug-ratio-dependent flexibility of the HA conjugates. Drug ratio in the polymer nanocomplex may thus be employed as a key factor to modulate FUS drug delivery efficiency via controlling the polymer flexibility. Our characterizations also highlight the significance of understanding the flexibility of drug carriers in ultrasound-mediated drug delivery systems.

5.
Langmuir ; 38(45): 13870-13879, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36327096

ABSTRACT

Liposomes are promising spherical vesicles for topical drug delivery to the eye. Several types of vesicles were formulated in this study, including conventional, PEGylated, and maleimide-decorated PEGylated liposomes. The physicochemical characteristics of these liposomes, including their size, zeta potential, ciprofloxacin encapsulation efficiency, loading capacity, and release, were evaluated. The structure of these liposomes was examined using dynamic light scattering, transmission electron microscopy, and small angle neutron scattering. The ex vivo corneal and conjunctival retention of these liposomes were examined using the fluorescence flow-through method. Maleimide-decorated liposomes exhibited the best retention performance on bovine conjunctiva compared to other types of liposomes studied. Poor retention of all liposomal formulations was observed on bovine cornea.


Subject(s)
Drug Delivery Systems , Liposomes , Cattle , Animals , Liposomes/chemistry , Particle Size , Maleimides/chemistry , Polyethylene Glycols/chemistry
6.
ACS Omega ; 7(29): 25741-25750, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35910111

ABSTRACT

New hybrid liposomes based on cationic amphiphiles with different structures of the head group (cetyltrimethylammonium bromide (CTAB), 3-hexadecyl-1-hydroxyethylimidazolium bromide (IA-16(OH)), 1-(butylcarbamoyl)oxyethyl-3-hexadecylimidazolium bromide (IAC 16(Bu)), and hexadecylmethylpyrrolidinium bromide (PR-16)) were developed for transdermal administration of nonsteroidal anti-inflammatory drugs. The different surfactant/lipid compositions were studied to obtain stable liposomes with high functionality. The hydrodynamic diameter of cationic liposomes was ∼110 nm. An admixture of cationic surfactants and PC liposomes improves the physicochemical properties of vesicles and transdermal diffusion rate and prolongs the release of drugs. Liposomal diclofenac sodium (DS) and ketoprofen (KP) were tested (using Franz cells) for transdermal penetration. Drug diffusion monitoring for 48 h demonstrated that the maximum DS and KP penetration through the synthetic membranes (Strat-M) is characterized by values of 255 ± 2 and 186 ± 3 µg/cm2, respectively. The influence of the surfactant head group on the properties (stability, release profile, permeability) of cationic liposomes was shown for the first time. While the drug specificity is evident for the rate of release, the permeability increases as follows: conventional liposomes < CTAB/PC < PR-16/PC < IAC-16(Bu)/PC < IA-16(OH)/PC for both medicines. The rat paw edema model was used to assess the anti-inflammatory effect of the IA-16(OH)/PC leader formulation in vivo. It was found that liposomal DS and KP are effective for relieving rat paw edema. It should be noted that DS-loaded hybrid liposomes demonstrated the highest therapeutic efficacy compared to conventional vesicles.

7.
J Colloid Interface Sci ; 626: 251-264, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35797869

ABSTRACT

Transmucosal administration offers numerous advantages for drug delivery as it usually helps to avoid first pass metabolism, provides rapid onset of action, and is a non-invasive route. Mucosal surfaces are covered by a viscoelastic mucus gel layer which acts as a protective barrier preventing the entrance of harmful substances into the human tissues. This function of mucus also inhibits the diffusion of drugs and nano-formulations and can result in a significant reduction of their efficacy. The design of mucus-penetrating nanoparticles can overcome the barrier function of mucus which may lead to better therapeutic outcomes. In this study, chitosan was chemically modified by grafting short chains of poly(ethylene glycol), poly(2-hydroxyethyl acrylate), poly(2-ethyl-2-oxazoline), or poly(N-vinyl pyrrolidone) and the resulting chitosan derivatives were used to prepare nanoparticles using an ionic gelation method with sodium tripolyphosphate. These nanoparticles were characterised using dynamic light scattering, transmission electron microscopy, small-angle neutron scattering and nanoparticle tracking analysis. Small-angle neutron scattering data revealed the presence of a large amount of water inside these nanoparticles and lack of a heterogeneous internal structure. The nanogel model with low crosslinking density is suggested as the most feasible model to describe the structure of these nanoparticles. The studies of the behaviour of these nanoparticles in bovine submaxillary mucin solutions and their penetration into sheep nasal mucosa indicated greater diffusivity of modified chitosan nanoparticles compared to unmodified chitosan nanoparticles with the best results achieved for the chitosan grafted with poly(N-vinyl pyrrolidone).


Subject(s)
Chitosan , Nanoparticles , Animals , Cattle , Chitosan/chemistry , Humans , Mucus/metabolism , Nanoparticles/chemistry , Polymers/metabolism , Pyrrolidinones/metabolism , Sheep
8.
Polymers (Basel) ; 13(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34883693

ABSTRACT

The choice of drug delivery carrier is of paramount importance for the fate of a drug in a human body. In this study, we have prepared the hybrid nanoparticles composed of FDA-approved Eudragit L100-55 copolymer and polymeric surfactant Brij98 to load haloperidol-an antipsychotic hydrophobic drug used to treat schizophrenia and many other disorders. This platform shows good drug-loading efficiency and stability in comparison to the widely applied platforms of mesoporous silica (MSN) and a metal-organic framework (MOF). ZIF8, a biocompatible MOF, failed to encapsulate haloperidol, whereas MSN only showed limited encapsulation ability. Isothermal titration calorimetry showed that haloperidol has low binding with the surface of ZIF8 and MSN in comparison to Eudragit L100-55/Brij98, thus elucidating the striking difference in haloperidol loading. With further optimization, the haloperidol loading efficiency could reach up to 40% in the hybrid Eudragit L100-55/Brij98 nanoparticles with high stability over several months. Differential scanning calorimetry studies indicate that the encapsulated haloperidol stays in an amorphous state inside the Eudragit L100-55/Brij98 nanoparticles. Using a catalepsy and open field animal tests, we proved the prolongation of haloperidol release in vivo, resulting in later onset of action compared to the free drug.

9.
Biomacromolecules ; 22(7): 2963-2975, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34180669

ABSTRACT

The use of fluorinated contrast agents in magnetic resonance imaging (MRI) facilitates improved image quality due to the negligible amount of endogenous fluorine atoms in the body. In this work, we present a comprehensive study of the influence of the amphiphilic polymer structure and composition on its applicability as contrast agents in 19F MRI. Three series of novel fluorine-containing poly(2-oxazoline) copolymers and terpolymers, hydrophilic-fluorophilic, hydrophilic-lipophilic-fluorophilic, and hydrophilic-thermoresponsive-fluorophilic, with block and gradient distributions of the fluorinated units, were synthesized. It was discovered that the CF3 in the 2-(3,3,3-trifluoropropyl)-2-oxazoline (CF3EtOx) group activated the cationic chain end, leading to faster copolymerization kinetics, whereby spontaneous monomer gradients were formed with accelerated incorporation of 2-methyl-2-oxazoline or 2-n-propyl-2-oxazoline with a gradual change to the less-nucleophilic CF3EtOx monomer. The obtained amphiphilic copolymers and terpolymers form spherical or wormlike micelles in water, which was confirmed using transmission electron microscopy (TEM), while small-angle X-ray scattering (SAXS) revealed the core-shell or core-double-shell morphologies of these nanoparticles. The core and shell sizes obey the scaling laws for starlike micelles predicted by the scaling theory. Biocompatibility studies confirm that all copolymers obtained are noncytotoxic and, at the same time, exhibit high sensitivity during in vitro 19F MRI studies. The gradient copolymers provide the best 19F MRI signal-to-noise ratio in comparison with the analogue block copolymer structures, making them most promising as 19F MRI contrast agents.


Subject(s)
Fluorine , Micelles , Polymers , Scattering, Small Angle , X-Ray Diffraction
10.
Sci Adv ; 7(24)2021 06.
Article in English | MEDLINE | ID: mdl-34117055

ABSTRACT

Skin cancer is one of the most common types of cancer in the United States and worldwide. Topical products are effective for treating cancerous skin lesions when surgery is not feasible. However, current topical products induce severe irritation, light-sensitivity, burning, scaling, and inflammation. Using hyaluronic acid (HA), we engineered clinically translatable polymer-drug conjugates of doxorubicin and camptothecin termed, DOxorubicin and Camptothecin Tailored at Optimal Ratios (DOCTOR) for topical treatment of skin cancers. When compared to the clinical standard, Efudex, DOCTOR exhibited high cancer-cell killing specificity with superior safety to healthy skin cells. In vivo studies confirmed its efficacy in treating cancerous lesions without irritation or systemic absorption. When tested on patient-derived primary cells and live-skin explants, DOCTOR killed the cancer with a selectivity as high as 21-fold over healthy skin tissue from the same donor. Collectively, DOCTOR provides a safe and potent option for treating skin cancer in the clinic.


Subject(s)
Skin Diseases , Skin Neoplasms , Administration, Topical , Camptothecin/pharmacology , Doxorubicin/pharmacology , Humans , Hyaluronic Acid , Skin Neoplasms/drug therapy
11.
J Colloid Interface Sci ; 599: 313-325, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33957424

ABSTRACT

Hydrophobic blocks of amphiphilic block copolymers often form glassy micellar cores at room temperature with a rigid structure that limits their applications as nanocapsules for targeted delivery. Nevertheless, we prepared and analyzed core/shell micelles with a soft core, formed by a self-assembled block copolymer consisting of a hydrophobic block and a polycation block, poly(lauryl acrylate)-block-poly(trimethyl-aminoethyl acrylate) (PLA-QPDMAEA), in aqueous solution. By light and small-angle neutron scattering, by transmission electron microscopy and by fluorescence spectroscopy, we showed that these core/shell micelles are spherical and cylindrical with a fluid-like PLA core and a positively charged outer shell and that they can encapsulate and release hydrophobic solutes. Moreover, after mixing these PLA-QPDMAEA core/shell micelles with another diblock copolymer, consisting of a hydrophilic block and a polyanion block, namely poly(ethylene oxide)-block-poly(methacrylic acid) (PEO-PMAA), we observed the formation of novel vesicle-like multicompartment structures containing both soft hydrophobic and interpolyelectrolyte (IPEC) layers. By combining small-angle neutron scattering with self-consistent field modeling, we confirmed the formation of these complex vesicle-like structures with a swollen PEO core, an IPEC inner layer, a PLA soft layer, an IPEC outer layer and a loose PEO corona. Thus, these multicompartment micelles with fluid and IPEC layers and a hydrophilic corona may be used as nanocapsules with several tunable properties, including the ability to control the thickness of each layer, the charge of the IPEC layers and the stability of the micelles, to deliver both hydrophobic and multivalent solutes.

12.
J Colloid Interface Sci ; 590: 249-259, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33548608

ABSTRACT

Temperature-responsive nanomaterials have gained increasing interest over the past decade due their ability to undergo conformational changes in situ, in response to a change in temperature. One class of temperature-responsive polymers are those with lower critical solution temperature, which phase separate in aqueous solution above a critical temperature. When these temperature-responsive polymers are grafted to a solid nanoparticle, a change in their surface properties occurs above this critical temperature, from hydrophilic to more hydrophobic, giving them a propensity to aggregate. This study explores the temperature induced aggregation of silica nanoparticles functionalised with two isomeric temperature-responsive polymers with lower critical solution temperature (LCST) behavior, namely poly(N-isopropyl acrylamide) (PNIPAM), and poly(2-n-propyl-2-oxazoline) (PNPOZ) with similar molecular weights (5000 Da) and grafting density. These nanoparticles exhibited striking differences in the temperature of aggregation, which is consistent with LCST of each polymer. Using a combination of small-angle neutron scattering (SANS) and dynamic light scattering (DLS), we probed subtle differences in the aggregation mechanism for PNIPAM- and PNPOZ-decorated silica nanoparticles. The nanoparticles decorated with PNIPAM and PNPOZ show similar aggregation mechanism that was independent of polymer structure, whereby aggregation starts by the formation of small aggregates. A further increase in temperature leads to interaction between these aggregates and results in full-scale aggregation and subsequent phase separation.

13.
Pharmaceutics ; 12(2)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32013056

ABSTRACT

The binding of plasma proteins to a drug carrier alters the circulation of nanoparticles (NPs) in the bloodstream, and, as a consequence, the anticancer efficiency of the entire nanoparticle drug delivery system. We investigate the possible interaction and the interaction mechanism of a polymeric drug delivery system based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers (pHPMA) with the most abundant proteins in human blood plasma-namely, human serum albumin (HSA), immunoglobulin G (IgG), fibrinogen (Fbg), and apolipoprotein (Apo) E4 and A1-using a combination of small-angle X-ray scattering (SAXS), analytical ultracentrifugation (AUC), and nuclear magnetic resonance (NMR). Through rigorous investigation, we present evidence of weak interactions between proteins and polymeric nanomedicine. Such interactions do not result in the formation of the protein corona and do not affect the efficiency of the drug delivery.

14.
Eur J Pharm Biopharm ; 143: 24-34, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31419584

ABSTRACT

Low permeability of the urinary bladder epithelium, poor retention of the chemotherapeutic agents due to dilution and periodic urine voiding as well as intermittent catheterisations are the major limitations of intravesical drug delivery used in the treatment of bladder cancer. In this work, maleimide-functionalised poly(lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-PEG-Mal) nanoparticles were developed. Their physicochemical characteristics, including morphology, architecture and molecular parameters have been investigated by means of dynamic light scattering, transmission electron microscopy and small-angle neutron scattering techniques. It was established that the size of nanoparticles was dependent on the solvent used in their preparation and molecular weight of PEG, for example, 105 ±â€¯1 nm and 68 ±â€¯1 nm particles were formed from PLGA20K-PEG5K in dimethyl sulfoxide and acetone, respectively. PLGA-PEG-Mal nanoparticles were explored as mucoadhesive formulations for drug delivery to the urinary bladder. The retention of fluorescein-loaded nanoparticles on freshly excised lamb bladder mucosa in vitro was evaluated and assessed using a flow-through fluorescence technique and Wash Out50 (WO50) quantitative method. PLGA-PEG-Mal nanoparticles (NPs) exhibited greater retention on urinary bladder mucosa (WO50 = 15 mL) compared to maleimide-free NPs (WO50 = 5 mL). The assessment of the biocompatibility of PEG-Mal using the slug mucosal irritation test revealed that these materials are non-irritant to mucosal surfaces.


Subject(s)
Drug Carriers/chemistry , Maleimides/administration & dosage , Maleimides/chemistry , Nanoparticles/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Animals , Drug Compounding/methods , Drug Delivery Systems/methods , Molecular Weight , Mucous Membrane/metabolism , Particle Size , Sheep , Urinary Bladder/drug effects , Urinary Bladder/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism
15.
J Colloid Interface Sci ; 551: 184-194, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31078100

ABSTRACT

By using methyl orange template, polypyrrole nanotubes were obtained by the oxidative polymerization of pyrrole. The nanotubes were carbonized in inert atmosphere to nitrogen-enriched carbon nanotubes. These were subsequently coated with 20 wt% of polypyrrole prepared in the absence or the presence of anionic dyes (methyl orange or Acid Blue 25). The morphology of all the samples was examined by the electron microscopies, FTIR and Raman spectroscopies. Moreover, X-ray photoelectron spectroscopy and elemental analysis were used to prove the chemical structure and the successful coating process. Electron paramagnetic resonance analysis was used to calculate the spin concentrations. Significant impact of coating method is evidenced with neat polypyrrole coating providing a two-fold capacitance increase compared to uncoated nanotubes, while coating in the presence of Acid Blue 25 decreasing it slightly. With respect to oxygen reduction reaction, coatings irreversibly transformed in the first few cycles in the presence of the products of O2 reduction, presumably hydrogen peroxide, altering the oxygen reduction mechanism. This transformation allows the tailoring of the polymeric shell, over ORR active carbonaceous core, and tuning of the catalyst selectivity and optimization of materials performance for a given application - from alkaline fuel cells to hydrogen peroxide generation.

16.
Biomacromolecules ; 20(1): 412-421, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30485077

ABSTRACT

A water-soluble polymer cancerostatic actively targeted against cancer cells expressing a disialoganglioside antigen GD2 was designed, synthesized and characterized. A polymer conjugate of an antitumor drug doxorubicin with a N-(2-hydroxypropyl)methacrylamide-based copolymer was specifically targeted against GD2 antigen-positive tumor cells using a recombinant single chain fragment (scFv) of an anti-GD2 monoclonal antibody. The targeting protein ligand was attached to the polymer-drug conjugate either via a covalent bond between the amino groups of the protein using a traditional nonspecific aminolytic reaction with a reactive polymer precursor or via a noncovalent but highly specific interaction between bungarotoxin covalently linked to the polymer and the recombinant scFv modified with a C-terminal bungarotoxin-binding peptide. The GD2 antigen binding activity and GD2-specific cytotoxicity of the targeted noncovalent polymer-scFv complex proved to be superior to the covalent polymer-scFv conjugate.


Subject(s)
Antineoplastic Agents/chemistry , Gangliosides/immunology , Nanoconjugates/chemistry , Single-Chain Antibodies/chemistry , 3T3 Cells , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Bungarotoxins/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/pharmacology , Mice , Polymethacrylic Acids/chemistry , Protein Binding , Single-Chain Antibodies/immunology
17.
ACS Macro Lett ; 8(2): 172-176, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-35619425

ABSTRACT

Buckminsterfullerene (C60) has a large potential for biomedical applications. However, the main challenge for the realization of its biomedical application potential is to overcome its extremely low water solubility. One approach is the coformulation with biocompatible water-soluble polymers, such as poly(2-oxazoline)s (PAOx), to form water-soluble C60 nanoparticles (NPs). However, uniform and defined NPs have only been obtained via a thin film hydration method or using cyclodextrin-functionalized PAOx. Here, we report the mechanochemical preparation of defined and stable C60:PAOx NPs by the introduction of a simple alkyne group as a polymer end-group. The presence of this alkyne bond is proven to be crucial in the mechanochemical synthesis of stable, defined sub-100 nm C60:PAOx NPs, with high C60 content up to 8.9 wt %.

18.
Soft Matter ; 14(37): 7578-7585, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30140809

ABSTRACT

Formation of interpolyelectrolyte complexes (IPECs) of poly(methacrylic acid) (PMAA) bearing a fluorescent label (umbelliferone) at the chain end and poly[3,5-bis(trimethyl ammoniummethyl)-4-hydroxystyrene iodide]-block-poly(ethylene oxide) (QNPHOS-PEO) acting as a fluorescence quencher, was followed using a combination of scattering, calorimetry, microscopy and fluorescence spectroscopy techniques. While scattering and microscopy measurements indicated formation of spherical core/corona nanoparticles with the core of the QNPHOS/PMAA complex and the PEO corona, fluorescence measurements showed that both static and dynamic quenching efficiency were increased in the nanoparticle stability region. As the dynamic quenching rate constant remained unchanged, the quenching enhancement was caused by the increase in the local concentration of QNPHOS segments in the microenvironment of the label. This finding implies that the local dynamics of PMAA end chains affecting the interaction of the label with QNPHOS segments was independent of both PMAA and QNPHOS chain conformations.

19.
Langmuir ; 34(27): 7998-8006, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29949376

ABSTRACT

Amphiphilic poly( N-(2-hydroxypropyl)methacrylamide) copolymers ( pHPMA) bearing cholesterol side groups in phosphate buffer saline self-assemble into nanoparticles (NPs) which can be used as tumor-targeted drug carriers. It was previously shown by us that human serum albumin (HSA) interacts weakly with the NPs. However, the mechanism of this binding could not be resolved due to overlapping of signals from the complex system. Here, we use fluorescence labeling to distinguish the components and to characterize the binding: On the one hand, a fluorescent dye was attached to pHPMA, so that the diffusion behavior of the NPs could be studied in the presence of HSA using fluorescence lifetime correlation spectroscopy. On the other hand, quenching of the intrinsic fluorescence of HSA revealed the origin of the binding, which is mainly the complexation between HSA and cholesterol side groups. Furthermore, a binding constant was obtained.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Serum Albumin, Human , Spectrometry, Fluorescence , Humans , Macromolecular Substances , Protein Binding , Serum Albumin , Serum Albumin, Human/metabolism
20.
Nanoscale ; 10(13): 6194-6204, 2018 Mar 29.
Article in English | MEDLINE | ID: mdl-29560983

ABSTRACT

In this paper, we revised the current understanding of the protein corona that is created on the surface of nanoparticles in blood plasma after an intravenous injection. We have focused on nanoparticles that have a proven therapeutic outcome. These nanoparticles are based on two types of biocompatible amphiphilic copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA): a block copolymer, poly(ε-caprolactone) (PCL)-b-poly(HPMA), and a statistical HPMA copolymer bearing cholesterol moieties, which have been tested both in vitro and in vivo. We studied the interaction of nanoparticles with blood plasma and selected blood plasma proteins by electron paramagnetic resonance (EPR), isothermal titration calorimetry, dynamic light scattering, and cryo-transmission electron microscopy. The copolymers were labeled with TEMPO radicals at the end of hydrophobic PCL or along the hydrophilic HPMA chains to monitor changes in polymer chain dynamics caused by protein adsorption. By EPR and other methods, we were able to probe specific interactions between nanoparticles and blood proteins, specifically low- and high-density lipoproteins, immunoglobulin G, human serum albumin (HSA), and human plasma. It was found that individual proteins and plasma have very low binding affinity to nanoparticles. We observed no hard corona around HPMA-based nanoparticles; with the exception of HSA the proteins showed no detectable binding to the nanoparticles. Our study confirms that a classical "hard corona-soft corona" paradigm is not valid for all types of nanoparticles and each system has a unique protein corona that is determined by the nature of the NP material.


Subject(s)
Blood Proteins/chemistry , Methacrylates/chemistry , Nanoparticles/chemistry , Protein Corona , Humans , Nanomedicine , Polyesters/chemistry , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...